Dark Plasmon Modes in Symmetric Gold Nanoparticle Dimers Illuminated by Focused Cylindrical Vector Beams

Tian-Song Deng,†‡§∥ John Parker,‡§∥ Yuval Yifat,‡ Nolan Shepherd,‡∥ and Norbert F. Scherer†‡,∥

†The James Franck Institute, ‡Department of Chemistry, §Department of Physics, University of Chicago, Chicago, Illinois 60637, United States

ABSTRACT: The plasmon hybridization model of electromagnetic coupling between plasmonic nanoparticles predicts the formation of lower energy “bonding” and higher energy “antibonding” modes in analogy with the quantum mechanical description of chemical bonding. For a symmetric metallic nanoparticle dimer excited by linearly polarized light, the hybridization picture predicts that in-phase coupling of the dipole moments is optically allowed, creating bright “modes”, whereas the out-of-phase coupling is dark due to the cancellation of the oppositely oriented dipole moments (in the quasistatic approximation). These bright modes are electric dipolar in nature and readily couple to scalar (i.e., linearly or circularly polarized) beams of light. We show that focused cylindrical vector beams, specifically azimuthally and radially polarized beams, directly excite dark plasmon modes in symmetric gold nanoparticle (AuNP) dimers at normal incidence. We use single-particle spectroscopy and electrodynamics simulations to study the resonance scattering of AuNP dimers illuminated by azimuthally and radially polarized light. The electric field distributions of the focused azimuthal or radial beams are locally polarized perpendicular or parallel to the AuNP dimer axis, but with opposite directions at each particle. Therefore, the associated combinations of single-particle dipole moments are out-of-phase, and the excitation (resonance) is of so-called “dark modes”. In addition, multipole expansion of the fields associated with each scattering spectrum shows that the vector beam excitation involves driving multipolar, e.g., magnetic dipolar and electric quadrupolar, modes, and that they even dominate the scattering spectra (vs electric dipole). This work opens new opportunities for investigating dark plasmon modes in nanostructures, which are difficult to selectively excite by conventional polarized light.

INTRODUCTION

Noble-metal nanoparticles (NPs) can support localized surface plasmon resonances (LSPRs), the collective coherent oscillations of conduction electrons in metal nanocrystals that exhibit strong far-field scattering and near-field enhancement of the excitation field.1 In individual metallic nanoparticles, the LSPR depends on the size and shape of the nanoparticle and the dielectric environment.2 When two or more NPs are placed in close proximity to each other, LSPRs are not the most appropriate basis or description of the resonance due to the strong near-field coupling of the LSPRs of the individual particles.3 The electrodynamic coupling of nanoparticle plasmons can lead to large spectral shifts, enormous electric field enhancement in the gap regions, as well as a new set of plasmonic modes. These features of coupled metal nanoparticles (nanocrystals) enable various applications in plasmon-enhanced spectroscopy and nano-optics, including plasmon rulers,4−6 sensing,7 surface-enhanced Raman spectroscopy,8−10 fluorescence,11 upconversion,12 optical switches,13 plasmonic circular dichroism,14 nanometric optical tweezers,15 and metallic nanoscale lenses.16 Thus, the fundamental properties of coupled plasmons have been translated to many applications.

The plasmon hybridization model developed by Halas and Nordlander et al.17,18 has been applied to explain the optical properties of various electrodynamically coupled plasmonic nanostructures. In this model, the plasmon modes of a coupled nanostructure are expressed in terms of interactions between the individual component resonances. The hybridized plasmon states are analogous to the formation of molecular orbitals from the hybridization of individual atomic wave functions used to describe chemical bonding.18 For example, for a metal nanoparticle dimer with individual states, ϕ1 and ϕ2, the hybridized plasmon states can be either in-phase (ϕ1 + ϕ2, enhanced dipole moment) or out-of-phase (ϕ1 − ϕ2, vanishing dipole moment) coupling, corresponding to spectrally broad super-radiant (bright) or narrow subradiant (dark) plasmon spectroscopic “modes”. In the case of a symmetric dimer
illuminated by linearly polarized (LP) light, the in-phase coupling of the individual dipole moments is optically allowed, whereas the out-of-phase mode is spectrally dark due to the cancellation of the equal, but oppositely oriented dipole moments of the two particles. These bright plasmon modes have been extensively studied, since they can be simply excited by conventional LP light. However, dark plasmons offer opportunities for enhanced plasmonic applications. Due to its vanishing dipole moment, the reradiation of energy of dark plasmons in the far-field is significantly smaller than that of the bright plasmons, resulting in much stronger near-field enhancement. Therefore, dark resonances present high-quality factors due to smaller radiative damping, and the interference between spectrally overlapping narrow dark modes and broad bright modes leads to plasmonic Fano resonances.

One way to generate dark modes is to break the symmetry of a nanostructure. For instance, dark modes have been observed in heterodimers, gold nanorod dimers, gold bipyramid dimers, and asymmetric core-shell particles.[26] In these nanostructures, out-of-phase coupling is allowed due to a broken exchange symmetry of the unequal dipole moments of the individual particles. A second approach is nonoptical excitation by electron beams, which can excite and probe dark modes in symmetric nanostructures with electron energy-loss spectroscopy.[27,28] A third approach for excitation of dark plasmons employs tailored illumination techniques, such as localized (near-field) emitters[29] or far-field excitation by non-normal incidence (retardation effects),[30] spatial phase shaping,[31] and cylindrical vector beams (CVBs).[32] Cylindrical vector beams, in particular azimuthally polarized (AP) and radially polarized (RP) beams, allow the selective excitation of multipolar plasmon modes in nanostructures[32,33] and have been used for improving the optical resolution in light microscopy[34] and nonlinear microscopy of nanostructures.[35] The response of plasmonic clusters excited by CVBs allows efficient excitation of dark modes in symmetric clusters of metallic nanoparticles.[33,36] In addition, CVBs enable the excitation of Fano-like resonances in highly symmetric plasmonic clusters (e.g., trimer and quadrumer), a result of the coupling of broad bright modes and narrow dark modes of different multipolar orders sharing similar charge distributions.[36] Therefore, CVBs are ideal far-field illumination sources to excite dark plasmon modes in symmetric metallic nanoparticle clusters.

Despite this potential, most of the reported work using CVBs involved dielectric particles (e.g., Si)[37–39] and lithographically patterned nanostructures.[40–42] Moreover, the polycrystalline quality of the metallic particles made by lithography results in greater damping and concomitantly weaker plasmon coupling. In addition, the precision of lithography is limited to the scale of ~10 nm making it difficult to study the gaps at the 1 nm level, which should have strong plasmon coupling and hybridization. Published work is limited to near-field scanning optical microscopy[43] or only radial beam illumination without theoretical simulations for interpretation. Thus, lithographically patterned nanostructures are not ideal for direct experimental validation of the hybridization model.

In this paper, we report experimentally measured scattering spectra of symmetric gold nanoparticle (AuNP) dimers illuminated by CVBs, and finite-difference time-domain (FDTD) electrodynamics simulations performed to analyze the plasmon modes for various interparticle separations and coupling. Moreover, using the novel multipole expansion method we developed,[33] we show that new multipolar (e.g., electric quadrupole (eQ) and/or magnetic dipole (mD)) modes that cannot be excited by linearly polarized light are excited by RP and AP beams. This work is the first experimental measurement of plasmonic dark mode excitation in symmetric metallic nanoparticle dimers using CVB illumination.

METHODS

Preparation of AuNPs with Different Silica Shell Thickness.

The AuNP@SiO2 particles were purchased from nanoComposix, with ~20 nm silica shell thickness. To get smaller gap distances, we etched a portion of silica shell using ammonia. Specifically, 20 μL of the AuNP@SiO2 solution was added to 2 mL of H2O2, followed by addition of 20 μL of ammonia (28–30%, Sigma-Aldrich). After gently shaking for a few seconds, the solution was left undisturbed for 12 h. The solution was centrifuged, the supernatant removed, and the pellet was redispersed in water for three cycles. After etching, the silica shell thickness decreased to ~1.5 nm. To get larger gap distances, we grew a new layer of silica on the original AuNP@SiO2 particles.[33] To do this, 20 μL of AuNP@SiO2 solution was added to 2 mL of methanol, then 0.2 mL of water and 0.2 mL of ammonia were added while stirring, followed by two additions of 40 μL of tetraethyl orthosilicate solution (20 vol % in methanol) at 2 h intervals. The reaction was allowed to continue while stirring for 24 h, resulting in a silica shell thickness of ~45 nm. The resulting particles were washed with water three times and dispersed in water for further use.

Measurements of Scattering Spectra of AuNP Dimers.

The scattering spectra were measured using a home-built microscopy setup. A schematic of the vector beam spectroscopy setup is shown in Figure 1a. A spatially coherent (broadband) white light continuum (Fianium, White Lase SC400, emitting between 500 and 1200 nm) was coupled to an inverted optical microscope equipped with an oil immersion objective with numerical aperture, NA ≤ 1.4 (Olympus, IX-81; SAPO 100X). The vector beam generator was placed outside of the microscope, just behind the linear polarizer and positioned using a translation stage for fine adjustment. The vector beam generator used here is a liquid-crystal-based polarization converter (ARCoptix, Switzerland), which can generate azimuthally and radially polarized cylindrical vector beams.[44] The back-scattered images and spectra of the sample plane were recorded either by a scientific complementary metal-oxide-semiconductor (sCMOS) array detector (Andor, Neo) connected to the eye piece of the microscope or by a charge coupled device (CCD, Andor, Newton) connected to an imaging spectrometer (Shamrock 193i) coupled to the side port of the microscope. The halogen light source on the top is coupled to an optical fiber to illuminate the samples. The aqueous dispersion of nanoparticles was drop-casted on a formvar-coated transmission electron microscope (TEM) finder grid and dried overnight.

We conducted correlated single-particle spectroscopy and structure measurements of specific dimers. Before taking scattering spectra, TEM images were acquired with a Tecnai 30F TEM (FEI) with a 300 kV accelerating voltage. The grid was then placed on a glass cover slide. Subsequently, immersion oil (n = 1.51) was put on top of the grid to match the index of the glass slide and reduce the scattering of the silica (n = 1.45) when AuNP@SiO2 was used. Finally, the sample cell was closed with another cover slide on the top, forming a sandwiched structure, with the grid (embedded in immersion oil) between two glass...
slides. Figure S1 shows images of the same area of the grid taken by TEM and optical microscopy demonstrating that we can obtain the structure and spectra of the identical dimers. Note that the dimers chosen for measurements are well separated from other nanoparticles (∼5 μm) to avoid scattering from neighboring particles that could affect the measurements.

Simulations of AuNP Dimer Structures. Simulations of the Au nanoparticle dimer were performed using the FDTD method via a freely available software package (MEEP). Au nanoparticle dimers were placed in an oil environment (index 1.50) with gaps obtained from TEM images. The dielectric function of Au was obtained by fitting the Drude−Lorentz model to fit the Johnson−Christy dielectric measurements for gold. For each simulation, the incident source had a given polarization state (linear, radial, or azimuthal) and a Gaussian temporal envelope chosen to span the incident wavelengths from 500 to 1000 nm. A spatial envelope was chosen to give each beam a 300 nm diameter (for the linearly polarized beam, this is the width of the Gaussian; for the CVBs, this is the mean diameter of the doughnut). A perfectly matched layer was used at the boundary of the simulation domain to model an open system. The simulation was then time-stepped until the fields decayed and the scattering spectra converged. Figure 4a shows a diagram of the simulation box.

The scattered electric field components were collected on the surface of a spherical monitor that encompassed the Au nanoparticle dimer. These electric field components were used to compute a multipole expansion of the scattered radiation by projecting the electric field onto a set of orthogonal vector spherical harmonic wave (VSHW) functions

\[
a_{nm} = \frac{\int_0^{2\pi} \int_0^\pi \mathbf{E}_{\text{scat}} \cdot \mathbf{N}_{nm}^* \sin \theta \, d\theta \, d\phi}{\int_0^{2\pi} \int_0^\pi |\mathbf{N}_{nm}|^2 \sin \theta \, d\theta \, d\phi}
\]

(1)

\[
b_{nm} = \frac{\int_0^{2\pi} \int_0^\pi \mathbf{E}_{\text{scat}} \cdot \mathbf{M}_{nm}^* \sin \theta \, d\theta \, d\phi}{\int_0^{2\pi} \int_0^\pi |\mathbf{M}_{nm}|^2 \sin \theta \, d\theta \, d\phi}
\]

(2)

Here, \(a_{nm}\) and \(b_{nm}\) are the electric and magnetic multipole scattering coefficients, respectively, of order \(n\) and spherical orientation \(m\). Physically, \(n = 1\) corresponds to the dipole modes, \(n = 2\) corresponds to the quadrupole modes, etc., and \(m = -n, -n + 1, ..., 0, ..., n - 1, n\) specifies different orientations of the mode. The complex vector fields \(\mathbf{N}_{nm}\) and \(\mathbf{M}_{nm}\) are the electric and magnetic VSHW functions, respectively.

The total scattering cross-section is then computed as a sum over the individual multipolar scattering coefficients

\[
C_{\text{scat}} = k^4 \sum_{n=1}^{\infty} \sum_{m=-n}^{n} n(n+1)(|a_{nm}|^2 + |b_{nm}|^2)
\]

(3)

Here, \(k\) is the wavenumber of the incident radiation in the oil medium. Each term in the sum represents the multipolar scattering cross-section of a particular multipolar mode.

This method was used for radiation up to quadrupole order for both electric and magnetic modes. Figure 3 shows the multipole expansion results for the AuNP dimer with a 40 nm gap. Equations 1 and 2 also allow the fields to be projected into the far field, from which angular scattering quantities can be computed. To determine spectra in the back-scattering direction...
RESULTS AND DISCUSSION

Setup for Single-Particle Spectroscopy and Beam Profiles. All single-particle optical studies were performed with a home-built microscopy setup shown in Figure 1a. We used a supercontinuum fiber laser source (500−1200 nm, Fianium) to illuminate the nanoparticle samples. Either the conventional zero-order Gaussian mode (LP) or higher-order Hermite–Gaussian doughnut modes (AP and RP) were used. The broadband AP and RP beams were created using a vector beam generator (ARCoptix), a liquid-crystal-based polarization converter that uses twisted nematic liquid crystals sandwiched between one uniform and one circularly rubbed alignment layer. The vector beam generator was positioned on a translation stage outside of the microscope. The collimated beam was reflected by a 50:50 beam splitter and focused by an optical microscope images (left column; measured in the forward direction) and simulated beam profiles (right column) of the LP, AP, and RP beams. Figure 1e shows the intensity profiles of the red rectangular area of the AP beams noted in Figure 1c.

Samples were prepared by drop-casting the silica-coated AuNP (AuNP@SiO2, nanoComposix) or AuNP aqueous suspension on a TEM finder grid and dried overnight. TEM images of AuNP dimers were taken before the measurement. The grid was embedded in immersion oil sandwiched by two glass cover slides. Thus, the refractive index of the space between the coverslip and grid is nearly matched to them, and the scattering from the oil/formvar interface is very weak. More experimental details can be found in Methods.

Plasmon Hybridization Model of the AuNP Dimer. The plasmon modes expected from the hybridization model17−19,52 for a symmetric AuNP dimer oriented along the x-axis are shown.

Figure 2. Plasmon hybridization model along with measured and simulated scattering spectra of a AuNP dimer excited by linear, azimuthal, and radial polarized beams. (a) Scheme of the plasmon hybridization model of a symmetric dimer, depicting in-phase/out-of-phase bonding/antibonding combinations of dipole moments. The arrows in the scheme indicate the dipole moments of the individual particles. The colors are matched to the types scalar or vector beams used, as shown in (c−f). (b) A TEM image of a AuNP dimer of 100 nm diameter coated and separated by silica shells, with 20 nm shell thickness (40 nm gap). (c−f) Experimental (solid) and simulated (dashed) scattering spectra of the AuNP dimer illuminated by tightly focused linear beams parallel ((c) x-polarized) and perpendicular ((d) y-polarized) to the dimer axis and azimuthal (e) and radial (f) beams, respectively. The arrows in (c−f) indicate the instantaneous direction of the electric field acting on the AuNP center at the focal plane (xy plane) and the dipoles thereby induced. The two red crosses in (f) indicate the electric field is in the z-direction (xz plane), which is the beam propagation direction.

to mimic the experiments, the far-field Poynting vector is integrated over the cap of a cone with apex angle 140°, oriented in the backward direction. Figure 2 shows simulated backscattering spectra in comparison with experiment.

To use smaller mesh sizes, FDTD simulations of nearly touching AuNP dimers were carried out with commercial software (FDTD Solutions 8.18, Lumerical Inc.). A total-field scattered-field source was used to simulate a propagating plane wave interacting with the AuNP dimers, with a wavelength range of 500−1200 nm. Both longitudinal and transverse LSPR were calculated by setting the illumination polarization parallel or perpendicular to the dimer axis. A three-dimensional nonuniform mesh was used, and grid sizes of 0.2 nm (in x- and y-axis) and 0.5 nm (in z-axis) were chosen for the AuNP dimers. The size of AuNP is 100 nm in diameter. We simulated AuNPs dimers with gaps of 1.0, 0.8, 0.6, and 0.4 nm. The results are shown in Figures 5b and S2.

Scattering spectra of individual AuNP@SiO2 and AuNP were calculated using Mie theory. The sizes of AuNPs were obtained from TEM images. The effective refractive index (n) of environment used for Au@SiO2 is 1.47 (between SiO2 (n = 1.45) and immersion oil (n = 1.51)) and for AuNP is 1.51 (index of immersion oil). The results are shown in Figure S3.
in Figure 2a. When the incident beam is polarized along the dimer axis, the in-phase coupling forms a bonding state with a red-shifted resonance (Figure 2a, parallel-directed black arrows), and the out-of-phase coupling represents an antibonding state with a blue-shifted resonance (Figure 2a, oppositely directed blue arrows). The scenario is just the opposite for polarization perpendicular to the dimer axis. The in-phase coupling is an "antibonding" state with a blue-shifted resonance (Figure 2a, parallel-directed red arrows), whereas the out-of-phase coupling with red-shifted resonance is a "bonding" state (Figure 2a, oppositely directed green arrows). After coupling, the bonding mode is lower energy, and the antibonding mode is higher energy. In addition, the coupling is weaker for polarization perpendicular to the dimer axis. Therefore, plasmon coupling of a symmetric AuNP dimer can form four states: in-phase bonding, out-of-phase bonding, in-phase antibonding, and out-of-phase antibonding, ordered from lower to higher energy. LP illumination of a symmetric AuNP dimer only allows excitation of in-phase bonding (x-polarized) or antibonding state (y-polarized) states due to the cancelation of the oppositely oriented dipole moments (in near-field proximity and neglecting retardation).

Spectra of a AuNP Dimer with 40 nm Gap. We measured a AuNP dimer consisting of 100 nm diameter AuNPs oriented along the x-axis with a gap of 40 nm (Figure 2b). This particular gap can be realized by using silica-coated AuNPs with a silica shell thickness of 20 nm. For the same dimer, we measured four spectra using x-polarized, y-polarized, azimuthally polarized, and (d, h, and i) radially polarized beam excitation. The resonance peaks are at (a) 699 nm (eD), (b) 621 nm (eD), (c) 655 nm (mD) and 664 nm (eQ), and (d) 594 nm (eQ), and 668 nm (eD). Although the LP beams only excite eD modes, the CVBs can excite eQ and/or mD modes. For radial beam illumination, the resonances of eD and eQ modes are well separated; a splitting of the peak was observed in the experimental spectra (Figure 2f solid). The dashed lines in (a−d) indicate the wavelengths selected for the near-field intensity distributions shown in (e−i). (e−h) The field distribution in the xy plane (focal plane) and (i) the field distribution in the xz plane associated with the electric dipole (eD) mode in the z-direction for radial beam excitation. The white arrows in (e−i) indicate the local electric field polarization, and the |E|^2 intensities are quantified with the color scales.

Figure 3. Expansion of the FDTD scattering amplitudes into electric and magnetic multipolar modes and near-field intensity distributions for (a, e) x-polarized, (b, f) y-polarized, (c, g) azimuthally polarized, and (d, h, and i) radially polarized beam excitation. The resonance peaks are at (a) 699 nm (eD), (b) 621 nm (eD), (c) 655 nm (mD) and 664 nm (eQ), and (d) 594 nm (eQ), and 668 nm (eD). Although the LP beams only excite eD modes, the CVBs can excite eQ and/or mD modes. For radial beam illumination, the resonances of eD and eQ modes are well separated; a splitting of the peak was observed in the experimental spectra (Figure 2f solid). The dashed lines in (a−d) indicate the wavelengths selected for the near-field intensity distributions shown in (e−i). (e−h) The field distribution in the xy plane (focal plane) and (i) the field distribution in the xz plane associated with the electric dipole (eD) mode in the z-direction for radial beam excitation. The white arrows in (e−i) indicate the local electric field polarization, and the |E|^2 intensities are quantified with the color scales.
...Scattered polarized light requires that we assign an identity to them. To do this, we perform a near-to-far-field transformation of the scattered fields and project the far fields into their electric and magnetic multipolar (dipolar and quadrupolar) contributions (more details of the multipole expansion are provided in Methods). We obtain the multipolar electric and/or magnetic modes that give rise to the total scattering (Figure 3) for the four different beams. Each simulated spectrum in Figure 2 is decomposed into the four lowest order multipolar modes: electric dipole (eD), magnetic dipole (mD), electric quadrupole (eQ), and magnetic quadrupole (mQ), as shown in Figure 3a−d. Our FDTD simulations of the AuNP dimer allow the following assignments: (i) only the eD mode is excited by LP light. For x-polarized light, the resonance of the eD mode is at 699 nm (Figure 3a) and for y-polarized light, the resonance of the eD mode is at 621 nm (Figure 3b); (ii) AP beams exclusively excite (and scatter from) mD (655 nm) and eQ (664 nm) modes (Figure 3c). Interestingly, these two modes have almost the same resonance (only ∼10 nm difference) and line width, and therefore cannot be distinguished experimentally; (iii) RP beams excite eQ (594 nm) and eD (668 nm) modes (Figure 3d). The larger spectral difference (∼80 nm) in these resonances explains their splitting in the scattering spectra obtained by radial beam excitation (Figure 2f).

In addition to expansion of the scattering attitudes into multipolar modes, it is also possible to obtain the near-field \(|E|^2 \) intensity distributions (with electric field polarization) and surface charge distributions excited in the AuNP dimer from electrodynamics simulations. The near-field intensity distributions are shown in Figures 3e−h with arrows indicating the electric field polarization for each polarized light illumination condition at wavelengths near the plasmon resonances. For x-polarized light (Figure 3e), the arrows indicate that the plasmon coupling is in-phase along the x-axis, and a hot spot is formed in the gap region due to the large accumulation of opposite electric charges facing the dimer gap. y-polarized light (Figure 3f) also produces an in-phase electric dipolar coupling, but along the y-axis, and the near-field distribution is mainly at the top and bottom regions of each AuNP. The collective excitation is very similar to the field distribution of two individual electric dipoles oriented along the y-axis (in the quasistatic approximation), indicating weak plasmon coupling for y-polarized illumination.
For azimuthal beam excitation (Figure 3g), the electric field acts along the y-axis of the AuNPs, but the field polarizations on each AuNP are opposite (antiparallel), resulting in an out-of-phase coupling and inducing an eQ mode. Furthermore, the electric field polarization between the two particles is basically along the y-axis, forming an instantaneous curl of displacement current in the xy plane. Therefore, a mD mode oriented along the z-axis is excited. Since both the eQ and mD modes share similar electric field distributions, their spectra (plasmon resonances) are nearly overlapped (Figure 3c).

Finally, due to the longitudinal electric field component (z-direction), the radial beam excitation drives multiple modes along the z-axis and in the xy plane. Both transverse (xy plane, Figure 3h) and longitudinal (xz plane, Figure 3i) near-field intensity distributions are shown. First, the electric field in the xy plane is along the x-axis of the AuNPs with opposite (antiparallel) polarizations, forming an eQ by out-of-phase coupling. However, the field distribution is mainly on two distal sides of the AuNP dimer. Second, the excitation along the xz plane is an in-phase coupling of two electric dipoles oriented along the z-axis. Superficially, this is similar to the case of y-polarized light, which involves in-phase coupling of electric dipole moments. However, the field distributions excited by the radial beam are quite different compared to the excitation by the y-polarized (LP) beam. The electric field polarization on each AuNP for RP beam is not perfectly parallel to each other, and the field distribution is more extended about the AuNP surface (Figure 3i), resulting in a spectrally broader eD mode and red-shifted resonance (Figure 3d). We summarize the near-field intensity distributions and local electric field polarization for each polarization of light at near-resonance wavelengths in Figure S4 in the Supporting Information.

Angular Scattering Distributions under CVBs Illumination. We calculated the far-field angular scattering patterns of the AuNP dimer for different CVB illumination conditions. A spherical monitor that collects the scattered light is placed at the center of the simulation box and encloses the dimer pair (Figure 4a). The angular scattering intensity is then calculated as a function of the angles theta (θ) and phi (ϕ). The angular scattering can also be decomposed into its individual multipolar component contributions. Figure 4b–e shows the angular scattering patterns for RP beam illumination, and the angular scattering for AP beam illumination is shown in Figure S5. For the RP beam, the electric dipole is z-oriented (Figure 4b). The angular scattering of the electric quadrupolar mode has a more complex pattern than the dipole mode and a maximum intensity an order of magnitude weaker (Figure 4c).

Despite the weaker eQ mode, there is a non-negligible interference term between the eD and eQ modes. This interference pattern causes destructive interference in the back-scattering direction and constructive interference in the forward scattering direction (Figure 4d). The total angular scattering intensity is then the sum of the individual multipolar intensities and their interference (Figure 4e). The result is an angular scattering pattern that is skewed in the forward scattering direction. For AP beam illumination, a similar interference effect occurs between the mD and eQ modes. In this case, however, the destructive interference occurs at the azimuthal angles ϕ = π, 3π/2, which corresponds to the y-axis (perpendicular to the dimer axis), whereas the back-scattering and forward scattering are the same.

Scattering Spectra of Nearly Touching AuNP Dimers. Given the significant spectral shifts and coupling for AuNP dimers with 40 nm separation, we studied the effect of the gap distance on the scattering spectra of AuNP dimers. We used “bare” AuNPs with diameter of 100 nm so the two AuNPs in the dimer are nearly touching (<1 nm separation). It is expected that the coupling should be stronger than that of the dimer with 40 nm gap. Figure 5 shows the scattering spectra of a nearly touching AuNP dimer oriented along the x-axis with x-polarized, y-polarized, AP, and RP light excitations. For comparison, scattering spectra of individual AuNPs were also measured. The experimental results and Mie-calculated spectra of an individual AuNP shown in Figure S3b have a LSPR at 628 nm. For x-polarized beam excitation (Figure 5b, black solid curve), in addition to a broad shoulder in the 600 nm region and a resonance at 723 nm, there is a new pronounced resonance at 1015 nm. The new resonance in the nearly touching AuNP dimer has also been reported in lithographically patterned AuNP dimers55 and theoretically for nearly touching AuNP dimers calculated using the boundary element method.54 When the gap distance, d, is decreased to the nearly touching regime (d/a < 0.005, a is the diameter of AuNP), the plasmon modes were shown to strongly shift toward the infrared.54

For y-polarized excitation (Figure 5b, red solid curve), the response is an in-phase antibonding state with a resonance at 617 nm, which is close to the LSPR of individual AuNP because of the weak plasmon coupling in the transverse (y-) direction. For the cases of AP and RP beam excitation, the spectra are very similar to the case of AuNP dimers with 40 nm gap, but with
Figure 6. AuNP dimer (sub-nanometer gap) spectra at different x- and y-positions with respect to the beam axis. (a, b) Scattering spectra for azimuthal beam illumination while moving the AuNP dimer in the x- (a) and y- (b) directions. (c, d) Scattering spectra for radial beam illumination while moving the Au dimer in the x- (c) and y- (d) directions. The left panels schematically indicate the directions of the spatial shifts along the x- and y-directions. The spectra in (a)–(d) shown as solid black curves are obtained at the center positions. The dashed black lines indicate the peak positions for dimers spatially shifted off the center. The particle and beam sizes shown in the left panels are from the actual simulation indicating their spatial overlay.

To further investigate the properties of AuNP dimers illuminated by CVBs, we broke the cylindrical symmetry of the illumination by shifting the AuNP dimer off the center of the CVBs. One can envision that the illumination becomes like a linearly polarized beam since the sample interacts preferentially or exclusively with an arc of the CVBs. We measured the scattering spectra of the same AuNP dimer (Figure 5a) using LP, AP, and RP light, but with small shifts of the AuNP dimer along the x- or y-directions with respect to the beam axis. We chose this nearly touching AuNP dimer as an example since the resonance shifts are more pronounced due to stronger coupling for the small gap. The intensity decreased while moving off the center for LP light illumination (both x-polarized and y-polarized), without any resonance shift (Figure S6). These findings can be attributed to the spatially homogeneous polarization and Gaussian intensity distribution for LP beams. Interestingly, the main resonance shifted to about 600 nm (Figure 6a) for AP beam excitation as the AuNP dimer was moved along the x-axis, eventually becoming very similar to the spectrum obtained with y-polarized light excitation (Figure 6b, red solid curve). When the AuNP dimer was moved along the y-axis, the resonance shifted to about 725 nm (Figure 6b), which is similar to the x-polarized light excitation (Figure 6b black solid curve). The diverse shifts of the resonances are ascribed to the inhomogeneous spatial polarization. When shifted along the x-axis, the AuNP dimer only “felt” an arc of the AP beam, with polarization perpendicular to the dimer axis. Conversely, when shifted along the y-axis, the AuNP dimer was in a region of the polarization parallel to the dimer axis. In addition to the resonance shifts, the signal intensity initially increased when shifting the AuNP dimer away from the center due to the annular intensity profile of the AP beam (Figure 1c). For RP beam excitation, the features were similar to the case of AP beam excitation, but the shifts of the resonances were in the opposite directions. This is the expected behavior since the spatial polarization of azimuthal and radial beams are everywhere perpendicular to each other.

Gap-Dependent Scattering Spectra of AuNP Dimers. To further investigate the properties of AuNP dimers illuminated by CVBs, we have investigated scattering spectra of the AuNP dimers with different gap distances. To change the
gap distances between the AuNPs, we etched the silica shell (decreased the gap) or grew a new layer on the original silica surface (increased the gap). More experimental details can be found in Methods. In this way, we obtained AuNP dimers with gaps from 30 to 85 nm. Figure 7a shows several AuNP dimers with gaps of 30, 35, 60, 75, and 85 nm. We measured the scattering spectra using LP (both x- and y-polarized), AP, and RP light for each dimer. Their corresponding scattering spectra are shown in Figures 7b and S7. While increasing the gap distances, the resonances do not shift for y-polarized and azimuthally polarized light (Figure S7b,c) since the electric dipole on each AuNP is perpendicular to the dimer axis, and thus not sensitive to the change of the gap distance. By contrast, the resonances blue shifted while increasing the gap distances for x-polarized light and radially polarized light. The blue-shift of the resonances can be attributed to the weaker plasmonic coupling at larger gap distances. In the case of radially polarized light, in addition to the blue shift of the main resonances, the spectra become more symmetric at larger gap distances.

CONCLUSIONS

We demonstrated that CVB illumination of symmetric AuNP dimers enables excitation of dark plasmon modes. These results for symmetric dimers are, we believe, the first direct experimental validation of the plasmon hybridization model.\(^\text{17−19,52}\) The hybridized states are also interpreted in terms of electric and magnetic multipolar modes. In cases with out-of-phase plasmonic coupling, we found that magnetic dipolar and electric quadrupolar modes are induced. These multipolar modes are found to spatially interfere with each other in the far field thereby affecting the directional scattering spectra. Furthermore, shifting the AuNP dimer off the center of the CVBs causes the spectra to change to become like those measured by linear beam excitation, as intuitively expected.

We also uncovered novel excitations in the longitudinal direction (i.e., beam propagation). The focused azimuthal CVB has a pure optical magnetic field on-axis that exclusively excites magnetic modes (zero electric field at the center of inversion). By contrast, the focused radial CVB has a longitudinally polarized electric field that excites a pure electric dipole mode (zero magnetic field at the center of inversion) at the focus. The latter is spectrally sharp and spatially centered along the optical axis.\(^\text{53,56}\) Simulations (not shown) indicate that the unique properties of focused azimuthal and radial beams could excite pronounced dark plasmon modes in longitudinal-oriented AuNP dimers, where only magnetic or electric modes hybridize.
However, this is a geometry we did not investigate experimentally.

Given the novel excitations we found for AuNP dimers, it would be interesting to investigate other nanostructures with longitudinal geometries with CVBs’ illumination. Our work also opens new opportunities for spectroscopic investigation of dark modes and Fano resonances in other symmetric plasmonic nanostructures composed of anisotropic nanoparticles, e.g., Au nanorods. The anisotropic shapes would give rise to larger plasmon resonance shifts and new plasmon-coupled resonances with higher-order multipolar modes.

[ASSOCIATED CONTENT]

Supporting Information
The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpc.8b10415.

Scattering spectra of individual Au@SiO2 nanoparticle and AuNP; near-field distribution of all polarizations at different wavelengths; angular scattering distributions of sub-nanometer AuNP dimer illuminated by azimuthal beam; FDTD simulations of nearly touching AuNP dimer by linearly polarized light; spectra of positioning shift illuminated by x-polarized and y-polarized light; spectra of gaps from 30 to 85 nm; multipole expansion analysis of 100 nm gap AuNP dimer (PDF)

AuNP dimer shifted from left side to the right side of the vector beams (AVI)

AUTHOR INFORMATION

Corresponding Author
*E-mail: nfscereh@uchicago.edu.

ORCID
Tian-Song Deng: 0000-0002-0841-4932
Yuval Yifat: 0000-0003-0952-556X

Author Contributions
∥T.-S.D. and J.P. contributed equally to this work.

Author Contributions
T.-S.D. and J.P. contributed equally to this work. T.-S.D. and N.F.S. designed the research; T.-S.D. performed the experimental measurements; J.P. and Y.Y. performed the simulations; N.S. helped in performing measurements; T.-S.D., J.P., N.S., and Y.Y. analyzed the data; T.-S.D., J.P., and N.F.S. wrote the manuscript; N.F.S. supervised the project; and all authors discussed the results and commented on the manuscript.

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank Dr Stephen K. Gray for helpful conversations on electrodynamics simulations and analysis. The authors acknowledge support from the Vannevar Bush Faculty Fellowship program sponsored by the Basic Research Office of the Assistant Secretary of Defense for Research and Engineering and funded by the Office of Naval Research through grant N00014-16-1-2502. We also acknowledge the University of Chicago NSF MRSEC for central facilities use. We thank the University of Chicago Research Computing Center for a grant of computer time for the FDTD simulations reported here. The simulations using Lumerical were performed at the Center for Nanoscale Materials, a U.S. Department of Energy Office of Science User Facility and supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357.

REFERENCES

